
PHYSICAL REVIEW E AUGUST 1998VOLUME 58, NUMBER 2
Monte Carlo studies of adsorbed monolayers: Lattice-gas models with translational degrees
of freedom
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Standard lattice-gas models for the description of the phase behavior of adsorbed monolayers are generalized
to ‘‘elastic lattice gases’’ which allow for translational degrees of freedom of the adsorbate atoms but have the
substrate lattice structure built into the adsorbate-adsorbate interaction. For such models, we derive a simple
and efficient grand-canonical Monte Carlo algorithm, which treats the occupied and empty sites in precisely the
same way. Using this method, we calculate the phase diagram of a simple model for the adsorption of
hydrogen on palladium~100!; this model includes only pairwise interactions and exhibits an ordered
c(232) structure. For our choice of parameters, we find only a rather small influence of the translational
degrees of freedom on the phase diagram. In particular, the observed asymmetry, albeit clearly present, is quite
weak. Finite-size scaling reveals that the second-order phase transition betweenc(232) and the disordered
phase is Ising-like, i.e., the elastic degrees of freedom do not change the universality class.
@S1063-651X~98!06608-2#

PACS number~s!: 02.70.Lq, 05.50.1q, 05.70.Jk, 64.60.Cn
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I. INTRODUCTION

The phase behavior of adsorbed monolayers on a
strate has found longstanding interest@1#, both experimental
@2–4# as well as theoretical@5–14#. Usually the theoretica
description is done in the framework of lattice-gas mode
where the substrate is a fixed lattice with fixed adsorpt
sites which can either be occupied or empty. Such a mod
equivalent to an Ising model, where an occupied site co
sponds to an ‘‘up’’ pseudospin, while empty sites are mo
eled as ‘‘down’’ pseudospins. The rich phase behavior~gas-
liquid transition as well as the formation of variou
superstructures with second-order phase transitions bel
ing to a variety of two-dimensional universality classes@5,6#!
is then investigated using interaction parameters like nea
neighbor, next-nearest neighbor,. . . , attraction or repulsion.
However, it is well known, and obvious from the transfo
mation to the Ising model~see also Sec. II!, that pair inter-
actions will always produce a phase diagram in
temperature-coverage (T-Q) plane which is symmetric
aroundQ51/2. This is a direct consequence of the inher
particle-hole symmetry of the model. The most common
proach to breaking this symmetry is the introduction
three-body interactions@11–13#. Without these terms, it is in
many cases impossible to obtain a reasonable fit to exp
mental phase diagrams, which quite often exhibit a mar
asymmetry.

On the other hand, the gas-liquid transition phase diag
in a simple fluid usually exhibits a substantial asymmet
too. This is, however, not due to three-body interactions
tween the particles, but rather to the simple fact that they
freely move in space, such that there is no notion of f
PRE 581063-651X/98/58~2!/2616~8!/$15.00
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sites, and consequently no particle-hole symmetry. Based
this observation, one should expect that one can also b
the symmetry by allowing for additional translational d
grees of freedom of the adsorbate atoms, while still stric
sticking to two-body interactions. Persson@15# has argued
quite convincingly along these lines.

Of course, such a system can be studied by straight
ward molecular dynamics~MD! simulation@16# of a number
of particles subject to an external potential which models
effect of the substrate. Similarly, the system could also
studied by using a standard Monte Carlo~MC! algorithm in
the canonical ensemble@17#. However, these approache
have a number of disadvantages when it comes to the a
rate quantitative analysis of phase transitions and crit
phenomena. The conserved particle number will, in the c
of a first-order phase transition, generate two coexist
phases separated by an interface. This requires, on the
hand, sufficiently large systems such that the structure of
interface, and the competition of the interfacial free ene
with the bulk free energy, is simulated correctly. On t
other hand, long runs are also required in order to equilibr
the interfacial structure—the conservation law induces
slow decay of density fluctuations~‘‘hydrodynamic slowing
down’’! @18#. Therefore one would prefer a simulatio
method which suppresses the occurrence of the interface,
a grand-canonical algorithm@19–23# ~note that both
constant-pressure schemes@24# as well as the Gibbs en
semble method@25# are not feasible due to the rigid structu
of the substrate!.

While it has been demonstrated that grand-canon
simulations of atomic models are able to study phase e
libria and critical phenomena with high accuracy@22,23#,
2616 © 1998 The American Physical Society
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such a method~or model! is nevertheless computational
rather demanding, at least when compared to simulation
simple lattice-gas or Ising models. We therefore seek a s
plified model, which still includes the translational degre
of freedom, and works in the grand-canonical ensemble,
nevertheless resembles more closely a simple lattice
model, thus retaining some aspects which allow ‘‘cheap
simulations. The main simplifications of our model are~i!
reduction of the translational degrees of freedom to two
mensions, and~ii ! keeping the lattice-gas notion of an a
sorption site which can be either occupied or empty, s
that the simulation allows only for a maximum number
adsorbed atoms. Although the~occupied or empty! sites can
move in space, the neighbor relations between the sites
kept fixed, such that the same neighbor table can be u
throughout a run. Moreover, occupied and empty sites
treated in precisely the same fashion, such that the Mo
Carlo updates are just site moves and pseudospin flips.
resulting algorithm is quite simple, compact, and efficie
permitting full vectorization based on the standard check
board method. Such an approach is quite analogous to s
grand-canonical simulations of binary alloys on a distorta
lattice @26,27#; however, the decisive difference is that w
now assign anartificial translational degree of freedom to
‘‘ghost particle’’ ~empty site! which, in reality, simply does
not exist. This requires some care in the construction
optimization of the MC algorithm, which is done in a simila
spirit as in previous ‘‘ghost particle’’ method simulations
adsorbates@20,21#, which, however, did not impose an
fixed neighbor structure. This fixed lattice structure is a
the main difference to a recent study of two-dimensio
phase transitions of systems with coupled internal and tra
lational degrees of freedom@28#, which, however, used a
random lattice with fluctuating neighbor shells. It should
mentioned that an additional advantage of such a predefi
lattice structure is a simplification of the data analysis;
definition of sublattices and order parameters etc. rem
trivial.

The remainder of this paper is organized as follows. S
tion II contains most of the theoretical development. Start
from a physical Hamiltonian, we perform the transformati
to the grand-canonical ensemble, and derive the Monte C
algorithm. The effective Hamiltonian, which governs t
simulation procedure, no longer exhibits any particle-h
symmetry. Moreover, the Ising model notion of a magne
field ~which, in the simple lattice-gas case, would descr
the symmetry of the phase diagram in the grand-canon
ensemble! no longer makes sense, due to an arbitrary cho
of the zero of the chemical potential~see Sec. II!. Section III
then describes how the algorithm is applied to a spec
model on the square lattice with nearest and next-nea
neighbor interactions; the results for the phase diagram
the critical behavior are presented in Sec. IV. The model
straightforward generalization of a simple lattice gas wh
has been studied by Binder and Landau long ago@9# in order
to describe the behavior of H/Pd~100!, which forms an or-
deredc(232) phase aroundQ51/2. In the limit of vanish-
ing elastic interactions, our model reduces to the case of
@9#. Finally, Sec. V concludes with a brief summary.
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II. GRAND-CANONICAL SIMULATIONS
OF ELASTIC LATTICE GASES

Our starting point is a distortable lattice ofN sites in
d-dimensional space. These sites are allowed to move fr
in a simulation box, with periodic boundary condition
whose size defines the system volumeV. The position of the
ith site is denoted byrW i . To determine the distances betwe
sites we impose the standard minimum image conven
@29#. If the lattice is perfectly ordered, the movable sites a
located at their ideal positions,rW i5rW i

0 ; these are the idea
adsorption sites. From the topology of that ordered latt
~e.g., square lattice! one derives the neighborhood relatio
between the sites~nearest neighborŝi j &, next-nearest neigh
bors ^^ i j &&, etc.!, which are viewed as a property of th
lattice as such, independently of any interactions, and in
pendently of the configuration in position space.

Now M sites out of theN possible ones are selected a
occupied with particles. We denote these sites w
i 1 ,i 2 , . . . ,i M , while the empty sites are
i M11 ,i M12 , . . . ,i N . By requiring bothi 1, i 2,¯, i M and
i M11, i M12,¯, i N , each occupation configuration corre
sponds uniquely to one index assignment. Alternatively,
occupation configuration is described by the standard latt
gas variablesci , where ci 1

5ci 2
5¯5ci M

51 and ci M11

5ci M12
5¯5ci N

50, or the pseudospin variablesSi52ci

21561.
An interaction between particles can only occur if th

are nearest or next-nearest neighbors on the lattice. If
particles are rather close to each other in real space,
third-nearest~or further! neighbors with respect to the im
posed lattice topology, they will not interact. The restricti
to nearest and next-nearest neighbors is only done for s
plicity of notation; inclusion of additional neighbor shell
triplet interactions, etc., is trivial. The decisive simplificatio
is that the interaction cutoff is not determined via the co
figuration in real space, but rather via the lattice. We n
introduce a characteristic function for nearest neighbors,

vNN~ i , j !5H 1 ~ i , j ! nearest neighbors

0 otherwise, ~2.1!

and similarly vNNN for next-nearest neighbors. Then th
Hamiltonian can be written as

H5 (
k51

M

v0~rW i k
2rW i k

0 !

1 (
k51

M21

(
l 5k11

M

vNN~ i k ,i l !vNN~rW i k
2rW i l

!

1 (
k51

M21

(
l 5k11

M

vNNN~ i k ,i l !vNNN~rW i k
2rW i l

!, ~2.2!

using nearest and next-nearest neighbor potentialsvNN and
vNNN as well as a substrate potentialv0, which binds each
particle to its ideal site. The canonical partition function
that M-particle system is then
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Zcan~M !5 (
$ci %uM

V0
2ME drW i 1E drW i 2

¯E drW i M

3exp@2bH~$rW i k
%!#. ~2.3!

Here, we sum over all possibilities to distributeM particles
onto theN-site lattice.V0 is an arbitrary normalization vol
ume which is necessary to render the partition function
mensionless. Within the quasiclassical approximation,V0 is
usually associated with the thermal de Broglie waveleng
however, within the framework of strictly classical statistic
physics it is just a normalization constant whose value d
not matter for the physics. Usually we will chooseV05ad,
where a is the lattice constant of the perfect lattice. T
integrations extend over the volume of the simulation b
note that only the coordinates of the occupied sites are i
grated over — only these are the physical degrees of f
dom. As usual,b5(kBT)21. The grand-canonical partition
function then is

ZGC5 (
M50

N

exp~bmM !Zcan~M !, ~2.4!

wherem denotes the chemical potential. It should be no
that the lattice induces a unique labeling of the partic
~which has explicitly been given above!, such that they mus
be viewed asdistinguishable. For this reason, a permutatio
factor (M !) 21 doesnot appear.

Now let us assume that a Monte Carlo simulation is r
where a simple Metropolis algorithm is applied to the effe
tive Hamiltonian

Heff5(
i 51

N

ci@v0~rW i2rW i
0!2m2akBT#

1(
i 51

N

~12ci !U0~rW i2rW i
0!1(̂

i j &
cicjvNN~rW i2rW j !

1 (
^^ i j &&

cicjvNNN~rW i2rW j !, ~2.5!

where ci and rW i are treated as completely independent
grees of freedom of anN-particle system. The parametera
and the potentialU0 will be specified below.

This algorithm will be correct, i.e., produce configuratio
satisfying the correct probability distribution, if the corr
sponding partition function

Zeff5V0
2N(

$ci %
E drW1¯E drWNexp~2bHeff! ~2.6!

is ~up to a constant prefactor! identical to the grand-
canonical partition functionZGC according to Eq.~2.4!. The
physical motivation for Eq.~2.5! is as follows: The factorsci
make sure that potential contributions occur only from r
particles. Hence, the potential part ofHeff is identical toH.
The term proportional tom describes the effect of the exte
nal chemical potential. The remaining two terms are co
terterms against the intrinsic tendency to ‘‘evaporate’’
higher temperatures: Without the confining potentialU0,
i-
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which binds the ‘‘ghosts’’ close to the ideal adsorption site
they would move around freely. Therefore the ‘‘ghost’’ sta
would be strongly entropically favored, by a translation
entropy of ln(V/V0) per ‘‘ghost’’ particle. Even worse, this
entropic driving force would diverge in the thermodynam
limit. While this pathology could be remedied by the ter
akBT alone, using a proper, system-size dependent choic
a, U0 is also very important fordynamicalreasons: We wish
to model the potentialsvNN , vNNN , v0 via springs with in-
finite range of interaction. Suppose a site has escaped
proper local environment in the ‘‘ghost’’ state. It will then b
very hard for this site to be turned back into the ‘‘real pa
ticle’’ state, because this change would introduce extrem
strongly stretched springs into the system, i.e., a very h
excitation energy. Therefore the site will diffuse freely in th
‘‘ghost’’ state, until it happens to come back close enough
its proper environment, such that it can rematerialize ag
We therefore expect, from random-walk arguments, that
algorithm without the confining potentialU0 would exhibit a
correlation timet}L2, whereL is the system linear dimen
sion. In other words, the method would be hampered by
artificial ‘‘critical slowing down’’ everywhere in the phas
diagram. We therefore view the introduction ofU0 as an
indispensable feature of the method.

In order to find the proper choices forU0 anda, we have
to compareZeff with ZGC. To this end, we first introduce th
partition function of a single particle in the potentialU0,

z5V0
21E drW exp@2bU0~rW !#. ~2.7!

Using the trivial identities($ci %
5(M($ci %uM , ( ici5M , and

( i(12ci)5N2M , we can integrate out the ‘‘ghost’’ de
grees of freedom to obtain

Zeff5 (
M50

N

exp~bmM ! exp~aM !zN2MZcan~M !. ~2.8!

In order to weight every termZcan(M ) correctly, we have to
choose

a5 lnz, ~2.9!

resulting in

Zeff5zNZGC. ~2.10!

The systems are thermodynamically equivalent since
prefactorzN is a constant. In order to avoid temperature d
pendence ofz, we choose a square-well potential

U0~r !5H 0 r ,R

` r .R, ~2.11!

where the cutoff radiusR is of the same order of magnitud
as the typical particle displacement from the ideal site. F
urW i2rW i

0u.R, dematerialization is forbidden. Therefore in tw
dimensions we have

z5
pR2

V0
, ~2.12!
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a5 lnS pR2

V0
D . ~2.13!

These choices ensure a correct simulation of the gra
canonical ensemble. In practice, one has to use an effe
chemical potential

meff5m1kBTlnz. ~2.14!

Note that the arbitrary normalization volumeV0, although
explicitly appearing in the above formulas, doesnot enter the
effective HamiltonianHeff , as it should be—the physica
properties of the system should not depend onV0. The rea-
son for this independence is simply the fact that the chem
potentialm can only be definedafter V0 has been specified
such thatm depends onV0, too. Indeed, from statistical ther
modynamics it follows that

m52kBT
]

]M
lnZcan~M !

5kBTlnV01
]

]M (
$ci %uM

E drW i 1E drW i 2
¯E drW i M

3exp@2bH~$rW i k
%!#, ~2.15!

such that the dependence onV0 in meff exactly cancels out
From these considerations, one sees that a particularly
venient normalization of the partition functions and t
chemical potential is given by the choiceV05pR2, i.e., the
normalization volume equals the cutoff volume of the alg
rithm. In this case,z51, andmeff5m. In the present study
this has, however, not been done; we rather choseV05a2

andR5a, wherea is the lattice constant of the undistorte
lattice.

In order to make the asymmetry induced by the trans
tional degrees of freedom more transparent, we transf
Heff to pseudospin variables viaci5(Si11)/2. Without writ-
ing down the resulting formulas in full detail, we would ju
like to point out that the Hamiltonian assumes the form

Heff5H0~$rW i%!2(̂
i j &

Ji j ~$rW i%!SiSj

2 (
^^ i j &&

Ji j ~$rW i%!SiSj2(
i

Hi~$rW i%!Si . ~2.16!

The decisive point is that each pseudospin is subject to
own local magnetic field, which depends on the configu
tion of the sites in space. In the simple lattice gas, the fiel
a global quantity,Hi[H, such that the transformationSi→
2Si accompanied withH→2H leaves the Hamiltonian in
variant. Such a transformation is impossible in the pres
case, and hence the particle-hole symmetry is no lon
present.

III. MODEL, AND MONTE CARLO
SIMULATION METHOD

We have studied L3L square lattices, with L
510,20,30,100, whose lattice constant~in the ideally ordered
d-
ve

al

n-

-

-
m

ts
-
is

nt
er

state$rW i
0%) is denoted bya. Every length is measured in unit

of a. Similarly, we choose an energy scaleJ.0 and measure
energies in units ofJ and temperatures in units ofJ/kB . The
Hamiltonian of Eq.~2.2! is then specified via

v0~r !5
k0

2
r 2,

vNN~r !5wNN1
kNN

2
~r 2 l NN!2, ~3.1!

vNNN~r !5wNNN1
kNNN

2
~r 2 l NNN!2.

For simplicity, we chose the following parameters:wNN

514, wNNN524, k05kNN5kNNN51, l NN51, l NNN5A2.
The choice ofl NN andl NNN ensures that forrW i5rW i

0 the elastic
contributions to the Hamiltonian vanish. Since these ter
are also positive, one sees that the ground state is obta
for the perfectly ordered latticerW i5rW i

0 . Of course, this is just
the simplest case; for choices ofl NN and l NNN which intro-
duce a mismatch between the substrate and the adso
system one should expect substantially more complicated
havior. The harmonic potentials were chosen as rather s
This is probably somewhat unrealistic in comparison w
experimental systems, but was introduced for reasons of s
plicity, and also because we expected the strongest influe
of the translational degrees of freedom for a rather soft
tice. The constant offset inv0 was set to zero, because it ca
be absorbed in the definition of the chemical potentialm.
Finally, for wNN andwNNN we note that forrW i5rW i

0 the model
reduces to an Ising model with nearest and next-nea
neighbor couplings,JNN521 ~antiferromagnetic! andJNNN
511 ~ferromagnetic!, respectively.

This latter model~with exactly this set of NN and NNN
coupling! has already been studied in quite some detail
Ref. @9#, whose data serve as a valuable reference state
the present study. The ground state in the grand-canon
ensemble is simply given by a completely filled lattic
(131)1 for m.8, a completely empty lattice (131)2 for
m,28, and an orderedc(232) structure for28,m,8.
This latter structure corresponds to a decomposition into
sublatticesa andb, each connected via next-nearest neighb
bonds, one of which is occupied and the other one em
(Q51/2). A physical realization of this structure is the s
perstructure of hydrogen on a palladium~100! surface.

We therefore sampled moments of the distribution of
order parameter corresponding to thec(232) structure, i.e.,
the staggered magnetization

mst5N21S (
i Pa

Si2(
i Pb

Si D . ~3.2!

It should be noted that the distribution ofmst is strictly sym-
metric around zero. This symmetry is not related to a
particle-hole symmetry~which is of course lacking in our
model!, but rather to the strict equivalence of the two subl
tices a and b, which is a purely geometric property. Henc
we studied̂ umstu&, the staggered susceptibility
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xst5
N

T
~^mst

2&2^umstu&2!, ~3.3!

and the fourth-order cumulant@30#

UL512
^mst

4&

3^mst
2&2

. ~3.4!

Further quantities of interest are the coverage

Q5N21(
i

^ci& ~3.5!

and the moment ratio

WL5
^mst

2&

^umstu&2
. ~3.6!

The chemical potential normalization at nonzero tempe
ture was fixed by settingV051. Furthermore, the cutoff ra
diusR for the confining potentialU0 @cf. Eq.~2.11!# was also
chosen asR51. Tests showed that this is a reasona
choice for ensuring sufficiently fast equilibration, while ve
large or very small values will both substantially slow t
simulation down. We used ‘‘compound moves,’’ where fo
single site we generated a new trial configuration forall de-
grees of freedom simultaneously, i.e.,

xi85xi1 f ~u121/2!,

yi85yi1 f ~u221/2!, ~3.7!

ci85@2u3#,

whereuk stands for a random number uniformly distribut
in the unit interval 0,uk,1, and@ # denotes the integer par
This trial move was then accepted or rejected via the s
dard Metropolis criterion, usingHeff . We chosef 50.8, en-
suring an acceptance rate of roughly 1/2 in the relevant t
perature regime. The algorithm was fully vectorized bas
on a four-sublattice checkerboard method and attai
0.483106 particle updates per second on a single C
Y-MP processor. Typical production runs near second-or
phase transitions used between 53105 and 13106 Monte
Carlo steps~MCS, sweeps through the lattice!.

IV. RESULTS

A. Phase diagram

The phase diagram in the grand-canonical ensemble,
the (m,T) plane, is shown in Fig. 1. At high temperature
the transition line between the ordered and the disorde
phase is of second order, while below the two tricritic
points it is of first order. There is a rather strong asymme
present in the phase diagram; however, to a large extent
is simply due to our normalization of the chemical potenti
coming from the choicepR2/V05pÞ1 ~see discussion a
the end of Sec. II!. Indeed, when choosing the more natu
normalizationV05pR2, i.e., plotting the phase diagram i
the (meff ,T) plane, the asymmetry is much weaker, but s
present, as seen in Fig. 2. Since there are infinitely m
-
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possible normalizations form, all resulting in different phase
diagrams with differing degrees of asymmetry, we do n
consider it useful to discuss the phase diagram’s symmetr
the grand-canonical ensemble. This should rather be don
the (Q,T) plane, where the phase diagram is free of su
trivial ambiguities.

In Fig. 3 we show this phase diagram, and compare i
the data obtained in Ref.@9# for ~i! the same model as ours
but the elastic interactions turned off, and~ii ! the same
model as~i! in the Ising language, but a~ferromagnetic!
three-body interaction added~for more details, see Ref.@9#!.
Clearly, the pure lattice-gas model with only pair interactio
has a symmetric phase diagram. The inclusion of the th
body term induces a very strong asymmetry, such that
second tricritical point at higher coverages vanishes~or was
undetectable within the resolution of Ref.@9#!. Nevertheless,
the shape of the second-order linec(232) ↔ disordered at
high temperatures is remarkably insensitive to the three-b

FIG. 1. The phase diagram of the elastic model specified in
~2.2!, and at the beginning of Sec. III, in the grand-canonical e
semble@(m,T) plane#. Second-order phase transitions at high te
peratures are indicated by filled circles. The error in the location
these transitions is smaller than the symbol size. The inter
bracketed by diamonds indicate the possible range for the loca
of first-order transitions at lower temperatures.

FIG. 2. Same as Fig. 1, but using a different normalization
the chemical potential, such that instead ofm there appears the
effective chemical potentialmeff5m1kBTlnz ~see text!.
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term ~for further discussion, see also Ref.@13#!. Conversely,
the phase diagram of our model, which shows the effec
elastic interactions, is rather close to that of the ‘‘unp
turbed’’ model in the whole plane. The highest critical tem
perature is reduced by a few percent, and the tricriti
points’ temperatures also seem to be somewhat redu
~note that we did not attempt to locate the tricritical poin
very accurately; the phase transitions atT52.5 still seem to
be of second order!. Altogether, we find a surprisingly sma
influence of the translational degrees of freedom. In fact,
asymmetry in our model’s phase diagram is so weak tha
can hardly be detected at all by just looking at Fig. 3. The
fore Fig. 4 compares the data for 0<Q<1/2 with the mirror
image of the phase diagram in the range 1/2<Q<1, with
symbols larger than the error bars.

B. Details of calculation

At low temperatures, where the phase transitions are
first order, we studied anL5100 system for 104 MCS per
state point. This system size was large enough to make
teresis well observable in sweeps ofm back and forth
through the transition. For example, Fig. 5 studies the tr
sition (131)2↔c(232) at T52, where a clear hysteres
is visible in the staggered magnetization. The transition
curs somewhere within the loop, and the correspond
ranges are indicated in Fig. 1 and Fig. 2. A more accur
determination of the transition chemical potentialm tr would
require thermodynamic integration procedures. For exam
one could use the method outlined in Ref.@26#, or the
Frenkel-Ladd procedure@31#. This was, however, not at
tempted, since it turned out that a reasonably accurate d
mination of the (Q,T) phase diagram was possible witho

FIG. 3. The phase diagram in the canonical ensemble@(Q,T)
plane#. ~i! Filled circles: Lattice-gas or Ising model with antiferro
magnetic nearest-neighbor interaction, and ferromagnetic n
nearest neighbor interaction~Ref. @9#!. ~ii ! Asterisks: Same Ising
model as~i!, but a ferromagnetic three-body interaction added~Ref.
@9#!. ~iii ! Filled diamonds: Model of the present study, which wou
reduce to~i! if the elastic interactions were turned off. The secon
order phase transition line at high temperatures ends in tricrit
points below which two-phase regions open up:c(232) and
(131)1 at high coverages;c(232) and (131)2 at low cover-
ages. In case~ii !, the two-phase region at high coverages is n
present.
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accurate knowledge ofm tr , simply because the hysteres
loops ofQ ~data not shown! are all rather flat.

For the second-order phase transitions at higher temp
tures we used finite-size scaling~FSS! @32,33# procedures.
We chose linear paths in the (m,T) plane ~not necessarily
parallel to the axes! and studied the fourth-order cumula
UL along them for the system sizesL510,20,30. For ex-
ample, Fig. 6 shows the data for a rather high temperat
One sees that the intersection point, which serves as esti
for the critical point, is quite well defined. Therefore th
method allowed a rather accurate determination of
second-order transition line. The intersection properties
teriorate somewhat when approaching the tricritical poin
which we did not attempt to localize very accurately. W
also triedWL intersection plots; however, we found that th
method would not provide more accurate estimates from
data than the analysis ofUL .

C. Critical behavior

The cumulant intersection value in Fig. 6 is around 0.6
a value which is typically obtained in simulations of th

t-

-
al

t

FIG. 4. The phase diagram of the elastic model specified in
~2.2!, and at the beginning of Sec. III, in the canonical ensem
@(Q,T) plane#. In order to demonstrate the weak asymmetry,
have superimposed the data forQ in the range 0<Q<1/2 ~filled
circles! with those for 12Q in the range 1/2<Q<1 ~open circles!.
Error bars are always smaller than the symbol sizes.

FIG. 5. Hysteresis loop ofumstu as a function ofm, for T52.
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two-dimensional Ising universality class@34#. Of course, this
is just the universality class which is expected for a o
dimensional order parameter as ours@5,6#. However, the
translational degrees of freedom gave us a reason to ne
theless check the critical behavior: In related thre
dimensional models of binary alloys@26,27# mean-field- like
critical behavior had been found, due to an effective lon
range interaction mediated by the elastic distortions. In
present model, however, mean-field behavior can be cle
ruled out, since in this case one expects@26,32,35# a cumu-
lant value of roughly 0.3. This is further corroborated by t
data collapsing plots for the staggered magnetization sh
in Fig. 7 ~Ising! and Fig. 8~mean field!. There we check the
standard FSS relations@32# (t5T/Tc21 denoting the nor-
malized distance to the critical point!

^umstu&5L2b/nm̃st~L1/nt !, ~4.1!

FIG. 6. Cumulant intersection plot forUL , and three system
sizes. BothT and m were varied along a linear path in the (m,T)
plane in the range (m,T)5(21.25,4.17) and (m,T)
5(20.8375,4.2437). Characteristic error bars are shown.

FIG. 7. Finite-size scaling plot for order parameter data near
second-order transition atm5mc520.930, T5Tc54.231, using
the critical exponents of the two-dimensional Ising universa
class,b51/8, n51. For Ising-like critical behavior, the data for th
different system sizesL510,20,30 should all lie on a single curve
Data are for the same path in the phase diagram as those of F
-

er-
-

-
e

rly

n

for Ising universality (b51/8, n51!, and

^umstu&5N21/4m̃st~N1/2t !, ~4.2!

for the mean-field case, whereN5L2 is the total number of
sites. Note that in this special case the arguments of
scaling functions coincide, while the prefactors diff
strongly. A comparison of Fig. 7 with Fig. 8 clearly show
that our data are better described by Ising-like behavior t
mean field. A similar conclusion can be drawn from susc
tibility data ~not shown!, where the relation

xst5Lg/nx̃st~L1/nt ! ~4.3!

for Ising-like behavior withg51.75 is checked against th
mean field relation

xst5N1/2x̃st~N1/2t !. ~4.4!

For the present model the translational degrees of freed
obviously have no influence on the universality class.

V. SUMMARY AND DISCUSSION

The present work proposes a modeling approach
Monte Carlo simulation studies of adsorbed monolayers. T
elastic lattice gas is a hybrid between a lattice model an
continuum model, allowing us to include the translation
degrees of freedom of the latter, while retaining the tight d
structure of the former, which permits an algorithm which
conceptually simple and computationally efficient. The p
sented treatment shows how to deal with the statistical
chanics of the vacancies or ‘‘ghost particles’’ in a consist
and efficient way; the introduction of the confining squa
well potentialU0 is a crucial feature. Nevertheless, starti
from the derived effective Hamiltonian, one could try to im
prove the efficiency even further. For example, by dec
pling the pseudospin flips from the translational motion, o
could use force-biased MC@29# for the latter, and perhap
also develop a cluster flip method@36# for the former. Both
the theoretical treatment as well as the simulation data s
that the inclusion of the elastic degrees of freedom destr
the inherent particle-hole symmetry present in simple latt

e

. 6.

FIG. 8. Same as Fig. 7, but plotted using mean-field-like criti
exponents.
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gases with pair interactions. Moreover, the theoretical an
sis shows that the chemical potential at nonzero temperat
is only defined up to an additive constant, which is fixed
prescribing a value for the partition function normalizati
volumeV0. Therefore one should view the phase diagram
the grand-canonical ensemble only as an auxiliary diag
with no direct physical meaning. As far as the phase diag
in the canonical ensemble is concerned, we observed a
prisingly small influence of the elastic degrees of freedo
both with respect to the induced asymmetry, as well as w
respect to the location of the phase boundaries. This is e
more astonishing when one considers the fact that the el
lattice was chosen as very soft~probably even beyond wha
is physically reasonable!, such that large fluctuations in th
positions of the adatoms occur. These fluctuations also h
no influence on the critical behavior; the two-dimension
Ising universality class remains unchanged. While we exp
s

u

y-
es

y

n
m
m
ur-
,
h
en
tic

ve
l
ct

that this latter result should also be true for more realis
elastic lattice gases, it is not clear how strongly the ph
diagram’s insensitivity to the elastic degrees of freedom
pends on the additional simplifying features which we intr
duced, i.e., mainly the restriction to harmonic potentials, a
the disregard of any mismatch between the adsorb
adsorbate and the adsorbate-substrate interaction. It is
tainly worthwhile to study these questions further by syste
atically lifting these restrictions, and introducing mo
realistic models.
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